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The chapters reprinted in this report were published in Status and Conservation
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CN-N, and Dr. John T. Bandy is Chief, CECER-CN. The Acting Director of
CERL is Dr. Alan W. Moore.

CERL is an element of the U.S. Army Engineer Research and Development Cen-
ter (ERDC), U.S. Army Corps of Engineers. The Acting Director of ERDC is Dr.
Lewis E. Link and the Commander is COL Robin R. Cababa, EN.
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1 Introduction

Background

Natural resources and wildlife managers for Federal agency lands, including

those dedicated to military training and testing missions, require environmental

perceptions and decisionmaking at multiple scales and with implications that

extend far beyond the local boundaries of the land the managers are responsible

for. Although management of landscapes at the local installation level is still as

important as it ever was, current perception for long-term ecological sustainabil-

ity requires regional contexts and conservation efforts. Important technologies

include:

* quantitative landscape approaches and Geographic Information Systems
(GIS) capabilities,

» statistically valid sampling designs and data analysis methods for assess-
ment and monitoring, and

» the use of ecological indicators of change to monitor natural, resource man-
agement, and mission-related disturbances; and ecosystem sustainability.

Specific taxonomic groups such as amphibians, birds, butterflies, ants, or carabid
beetles, show promise to represent excellent taxa for tracking ecosystem, land-
scape, and possibly global ecological integrity.

This technical manuscript contains three peer-reviewed chapters from the book
Status and Conservation of Midwestern Amphibians, M. J. Lannoo, editor, pub-
lished by the University of lowa Press in 1998. These chapters were brought to-
gether for the purpose of providing quantitative guidance and landscape perspec-
tives to military land managers.

The chapter “5 Amphibians, Ecosystems, and Landscapes” describes a very fun-
damental and highly applicable approach to coarse-grained classification of eco-
systems on a regional or continental basis and classifying taxa within the de-
rived ecosystems. The example that is provided characterizes the Midwestern
amphibian fauna and compares it to that of North America north of Mexico.
Similarly, military wildlife managers can characterize prespecified or desired in-
stallation faunal elements and compare to regional or continental patterns. This
approach was used to characterize the entire vertebrate fauna of the Marine
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Corps Air Ground Combat Center in the south-central Mojave Desert and com-
pare the distribution of this specific fauna to the entire Mojave and North Amer-
ica (Krzysik and Trumbull 19960.

The chapter “41 Ecological Design and Analysis: Principles and Issues in Envi-
ronmental Monitoring” provides guidance to both novice and experienced field
biologist for designing and implementing ecological assessment or monitoring
programs, and identifies important principles and issues in experimental design,
field data collection, data management, and statistical analysis. The emphasis is
on areas of common problems, pitfalls, sources of confusion, and misapplications.
A rich and diverse source of recommended readings and references are provided.
A recent review of this book said the chapter “would be useful for any student or
professional initiating population studies and is worth the price of the book.”
(Stewart 1999@.

The chapter “42 Geographic Information Systems, Landscape Ecology, and Spa-
tial Modeling” provides a readable introduction to the complex, but very valuable
technologies and applications of Geographic Information Systems (GIS), cartog-
raphy, landscape ecology and its metrics, and spatial modeling. A rich assort-
ment of selected references are provided to extend the reader’s knowledge base
in specialized topics. GIS is one of the most important and practical resource
management tools for land managers. Principles of GIS are developed in this
section, stressing capabilities and applications, nature of input and output data,
and the relative merits of raster and vector GIS. Fundamental concepts dis-
cussed in cartography include map scales, map projections, geographic coordi-
nate systems, and thematic maps. The concepts and terminology of landscape
ecology are introduced, stressing quantitative aspects of landscape patterns and
issues of scale. Spatial modeling is introduced through a real-world example of
producing a landscape density surface by the interpolation and smoothing of
geographic field data of a highly fragmented desert tortoise population.

E]Krzysik, A.J. and V.L. Trumball. 1996. Biodiversity and Wildlife Management Plan: An Ecosystem Approach — Ma-
rine Corps Air Ground Combat Center, Twentynine Palms, California. Final Report, 400 pp.

§ Stewart, M.M. 1999. Book Reviews: “Status and Conservation of Midwestern Amphibians.” Copeia 1999:536-538.
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Amphibians, Ecosystems, and Landscapes

Anthony J. Krzysik

There is growing concern and empirical evidence that
amphibians, even species that were considered histori-
cally to be abundant, are experiencing global popula-
tion declines (Barinaga 1990; Blaustein and Wake 1990;
Phillips 1990; Wyman 1990; Wake 1991). Phillips (1994)
has written a popular book on the subject. Declines have
been reported for the western (Hayes and Jennings
1986) and southwestern {(Clarkson and Rorabaugh
1989) United States and the Caribbean (Hedges 1993).
Lannco et al. (1934) documented dramatic changes in
an Jowa amphibian community between 1920 and the
early 1990s.

Although amphibian declines have been discussed as
a global phenomenon, there are regions of the globe
that have not shown declines—the southeastern United
States, Amazon basin, Andean slopes, central Affrica,
southeast Asia, Borneo, and the Philippines (Hedges
1993). Much of the decline in amphibian populations
parallels comparable declines in other taxa and is the
direct result of habitat loss, fragmentation, and degrada-
tion (including pellution) from anthropogenic activi-
ties, especially deforestation (e.g., Lowe 1985; Corn and
Bury 198%; Dodd 1991; Hedges 1993). Reported de-
clines have been associated with habitat loss or degrada-
tion (pollution), exotic fish or bullfrog introductions,
acid deposition, disease, and increased ultraviolet (UV-
B) radiation (ozone depletion). The stocking of trout
(often by aircraft) in natural fishless alpine lakes of the
western United States probably represents important
predation on tadpoles. However, some amphibian pop-
ulation declines have occurred in relatively pristine ar-
eas that have not been impacted by humans (Heyer et al.

1988; Blaustein and Wake 1990; Czechura and Ingram
1990; Bradford 1991; Wake 1991; Crump et al. 1992;
Carey 1993). Many declines remain a mystery, and an
overall model including synergistic interactions and cu-
mulative effects has not been proposed. The assessment
of cumulative impacts are important for understanding
environmental degradation (e.g., Johnston, Detenbeck,
and Niemi 1990; Gosselink et al. 1990). Some research-
ers have urged caution and have noted that certain re-
ports of amphibian declines may be explained as natural
stochastic fluctuations (Pechmann et al. 1991).

There are atleast four important reasons for consider-
ing a comprehensive global-scale amphibian monitor-
ing program:

1. Hypothesis testing—are there declines in am-
phibian populations on local, regional, national, and
glohal scales? What are the taxonomic and scale is-
sues? What are the causes with respect to taxa, scale,
and environmental, ecological, or natural history re-
quirements? Are the declines relevant to order (ie.,
only frogs), specific families, genera, species, or popu-
lations? To what extent are amphibian declines glo-
bal, national, regional, or local issues? Is there one
cause for the decline, or are there few or many causes?
What are the implications for synergisms and cumula-
tive effects?

2. Amphibian species are strongly associated with
their habitats (ecosystems), and some species require-
ments are highly stenotopic (i.e., have narrow envi-
ronmental requirements). A large majority of am-
phibians require landscape mosaics of two or more
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ecosystems and spatial habitat integrity (i.e., dispersal
corridors) to complete life history requirements. This
implies sensitivity to habitat fragmentation. There-
fore, amphibians represent excellent ecological indi-
cators or barometers of the ecological condition of
landscapes. A global monitoring program for amphib-
ian populations and communities in an ecoregional
context represents an integral component of spatial
and temporal trend analysis and risk assessment in
monitoring the ecological integrity of global ecosys-
tems.

3. There are legal mandates under the Federal En-
dangered Species Act, state legislation, and interna-
tional staiutes and agreements. Many amphibian spe-
cies are already listed on international, federal, and
state levels as threatened, endangered, or sensitive
(see Lannoo, Introduction, this volume).

4. There are the conservation implications of taxa
that are rare or possess very limited distributions.

The landscape ecology approach and spatial technol-
ogies in the framework of Geographic Information Sys-
tems (GIS) (e.g.. remote sensing and spatial analysis/
modeling) represent powerful tools for monitoring and
modeling the distribution, density patterns, and meta-
population dynamics of amphibian populations. Addi-
tionally, GIS can be instrumental in extending these
data into other applications relevant to the conservation
biology of amphibians. (See Krzysik [Chpt. 42, this val-
ume] for an introduction to, and examples of, GIS, land-
scape ecology, and spatial modeling.)

Landscapes and Ecosystem Classification

It is important to distinguish between scale, landscapes,
and ecological hierarchies. Scale is defined by spatial
extent {see Krzysik, Chpt. 42, this volume, Table 42-2).
Landscape can refer to two attributes: spatial scale
(which inherently includes pattern) or spatial pattern
(at any scale). Landscape scales are on the order of 1 to
10,000 square kilometers, while landscape patterns refer
to the spatial context of landscape mosaics and environ-
mental gradients (see Krzysik, Chpt. 42, this velume).
Ecological hierarchies represent the hierarchical or-
ganization of biological systems, consisting of genes/
populations, communities/ ecosystems, ecoregions, and
the globe. In this series the higher hierarchy is com-
prised of elements from the next lower one. Species and
subspecies consist of one, few, or many populations
defined by genetic structure in a spatial/temporal con-

text. Species are not evenly distributed in the landscape
but respond to environmental/ecological mosaics and
gradients (i.e., habitat selection). Populations of a spe-
cies or subspecies on the landscape can be classified on
the basis of gene flow as panmictic, metapopulations, or
isolated. Panmictic refers to potentially freely and ran-
domly interbreeding individuals in a single gene pool
(approximately at one genetic exchange per genera-
tion; reviewed in Lande and Barrowclough 1987). A
metapopulation represents the situation where, as spa-
tially explicit populations become extinct, colonization
occurs from other occupied patches, and a long-term
equilibrium is possible (Levins 1969; Gilpin and Hanski
1991). However, a more recent review has challenged
some of the assumptions of traditional metapopulation
dynamics and stresses the need for a better understand-
ing of the spatial scales and the ecological and genetic
processes operating on local populations (Hastings and
Harrison 1994). Isolated populations have no genetic
exchange, and therefore there is the potential for either
genetic divergence or extinction (Franklin 1980; Soulé
1980, 1987).

Communities are species/population assemblages
characterized by composition, functions, and interac-
tions (e.g., competition, predation, mutualism, and par-
asitism). Communities can be defined in a specific spa-
tial/temporal context at any scale. An ecosystem
consists of one or more communities within a spatial/
temporal context of any scale, characterized by its pro-
cesses and the flow (transfer) of energy, materials, and
organisms into and out of the system. Ecoregions are
global-scale {continental) landscapes spatially distinct
from one another by their climate, physiography, hy-
drology, and biota.

Ecologists, geographers, and philosophers will always
argue over ecological classifications and boundaries.
This is not surprising, because nature abhors classifica-
tions and boundaries. Nevertheless, even in the context
of the reality of the spatial complexity of biological,
physical, and chemical gradients/mosaics and tempaoral
dynamics, in making ecologically responsible land-use
and management decisions it is necessary to develop
ecosystem classifications and boundaries in order to as-
sess and monitor natural resources and to conserve
biodiversity. For more information, see the review by
Bailey (1996).

This chapter introduces a systematic hierarchical ap-
proach to the classification of ecosystems. Although eco-
systems are not spatially static but represent dynamic tra-
jectories, ecosystem classifications portray a convenient



spatial and functional reality. Terminology must first be
introduced. The environment is the complete spatial
and temporal context of biotic and abiotic attributes.
Environmental attribute sets (EASs) are eleven sets of
environmental attributes that completely and explicitly
define the environment at any scale. Environmental at-
tributes are parameter sets that define the environment
(e.g., temperature, precipitation, topography, streams,
roads, and vertebrates). Environmental parameters
(variables) are specific quantifiable variables that define
attributes {e.g., maximum or minimum or variance of
daily temperature, amount of rainfall per month, eleva-
tion, percent slope, number of second-order streams
per square kilometer, average instream flow rate, length
of secondary roads per square kilometer, number of spe-
cies of vertebrates, and density of carnivores per square
kilometer).

Table 5-1 presents the eleven EASs. Note that this is
the baseline of a hierarchy (e.g., the coarsest scale) that
characterizes ecosystems and determines their identifi-
cation (or habitat gestalt), composition, and processes.
Note also that the EASs are closely related and interde-
pendent. For the objectives of a given analysis or project,
each EAS can consist of a single parameter or multiple
parameters, and some EASs are superfluous or may be
ignored. The system is valid at any extent (scale) and at
any grain (resolution), and the details of hierarchies,
FASs, and parameters considered are user relevant. I
will briefly discuss the eleven EASs.

Climate

The climate of a region determines the nature of its
landscape and ecosystems. Climate is determined by
spatial location on earth relative to the energy flux of
the sun (intensity and duration), proximity to large bod-
ies of water (e.g., oceans), topography (e.g., elevation or
mountain rain shadow), prevailing winds, and ocean
currents. Therefore, the most important parameters in-
clude latitude, longitude, and elevation, which in turn
determine temperature, precipitation, humidity, and
actual and potential evapotranspiration. Temperature
extremes {maximum, minimum, or some measure of
temperature regimes) and the seasonal distribution
(variance and predictability) of rainfall are more impor-
tant predictors of biotic responses than averages. A sin-
gle variable representing energy flux—potential evapo-
transpiration—was successful at predicting 80 to 93
percent of the variability in species richness of amphibi-
ans, reptiles, birds, and mammals in North America
north of Mexico (Currie 1991; in contrast, see Brod-
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Table 5-1. Environmental attribute sets (EASs) for any
extent and grain

Climate
Geomorphology-Geology
Hydrology-Hydrography
Soils-Substrate Texture
Plants

Microbes

Animals

Disturbance Regimes

e B A o

Anthropogenic Disturbance
Biogeography
. Stochasticity

—
—

man, Chpt. 4, this volume).

Continental-scale climatic parameters are directly as-
sociated with floral and faunal patterns (i.c., ecoregions
or biomes). However, microclimates are undoubtedly
important for amphibians, invertebrates, and other
taxa, especially when considering moisture gradients.
The next three EASs that will be discussed directly in-
fluence the development of microclimates.

Geomorphology-Geology

Geomorphology, or physiography, defines landform
and its geology and is applicable at any scale, from conti-
nental-scale physiographic provinces and geological for-
mations to microtopography. The three main physio-
graphic
piedmont, and coastal plain—exemplify biological dif-
ferentiation, well illustrated by the regions, herpetofau-

provinces of the Southeast—mountains,

na, including subspecies. Topography is important for
the distribution/abundance patterns of amphibians.
Important ecosystem parameters are elevation, topo-
graphic complexity, percent slope, slope aspect, depres-
sions for pools of rainwater, and geological outcrops.
Important habitat elements for salamanders include
flaking sandstone cliffs for the green salamander
(Aneides aeneus), flaking shale in moist forests for the
longtail salamander {(Eurycea longicauda), and cave sites
for the cave salamander (E. lucifuga).

Hydrology-Hydrography

Hydrology represents wetland, aquatic, and riparian
ecosystems. This is an important EAS not only for am-
phibians but also for landscape and regional biediversi-
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ty. Hydrology readily lends itself to hierarchical classifi-
cation (e.g., Cowardin ct al. 1979). Important hierarchi-
cal atiributes include:

1. Surface waters
a. Lentic—stationary waters: lakes, ponds, sloughs,
quiet pools of streams, temporary pools (includ-
ing floodplains)
b. Lotic—running waters: rivers and streams, in-

cluding springs. Leotic systems are readily
classified into stream orders (e.g., Strahler,
1964).

al or bl. Perennial waters—permanent water

a2 or b2, Intermittent waters—predictable seasonal
water, present at least several months to most of
the year, generally absent in midsummer through
fall

a3 or b3. Ephemeral waters—unpredictable waters
of shorter duration, lasting from several hours—
for example, in desert washes—to several weeks
and usually less than one or two months. Tempo-
rary waters are probably highly significant land-
scape clements, but their ecology is poorly known
(Williams 1987). Vernal pools are important
landscape elements, particularly in Mediterra-
nean regions of the world, that are endangered
ecosystems {Zedler 1987).

Table 5-2. Soil or substrate texture classification

2. Subsurface or subterranean waters—underground
ecosystems that are poorly known. The unexpected
fauna of the hyporheos is just beginning to be appre-
ciated (reviewed in Ward 1992).

Riparian ecosystems are classified according to their as-
sociation with perennial, intermittent, or ephemeral
waters as hydroriparian, mesoriparian, and xeroripari-
an, respectively.

Soils-Substrate Texture

Soil classes (reflecting their physical, chemical, and
biological properties), texture, organic content, and soil
depth are important EASs characterizing ecosystems.
Soil types determine moisture capacity, infiltration, ero-
sion potential, suitability for burrowing, and vegetation
types. Because the technical definition of soil is rock that
is exposed to weathering (Jenny 1980; Huggett 1995},
substrate texture is a component of soil classification.
Soil texture directly determines flora and fauna species
compositions based on the relative distribution of parti-
cle sizes: clay, silt, sands, gravels, cobbles, and boulders
(Table 5-2 presents a useful classification for soil or sub-
strate texture).

Plants, Microbes, and Animals

Because of their importance, plants, microbes, and
animals were classified into three EASs, but they just as
effectively could have been considered as three high-

Texture Class

Farticle Size Range (mm)

Coarse Classification”

Clay 0.00025 — < 0.004

Silt 0.004 — < 0.0625

Fine sand 0.0625 —< 0.5 Fine
Coarse sand 05-<4 Sand

Fine gravel 4-<15 Fine gravel
Coarse gravel 16-<75 Coarse gravel
Cobbles 75 — < 300

Smmall boulders 300 ~ < 600 Rocks
Medium boulders 600 - < 1200

Large boulders 1200 — < 2400

Very large boulders > 2400 Boulders

*A coarse classification may be useful for some applications and with little practice can rapidly be conducted by eye without actu-

al measurements,



order attributes in a single EAS, the biological environ-
ment, Plants, microbes, and animals are interdependent
and interact among themselves and with other EASs,
which are also closely interdependent and which in-
fluence one another to a large extent. The biological
environment determines the specific structure (includ-
ing composition), dynamics, and patterns of competi-
tion, predation, mutualism, parasitism, and disease/
pathogens in an ecosystem classification framework.

Disturbance Regimes

Natural disturbance regimes influence the seven EASs
above them in Table 5-1, and both ecosystem processes
and the maintenance of biodiversity are dependent on
them. Examples of attributes include flood pulses, fire
regimes, storms and windthrows, and pest and pathogen
outbreaks. These are usually modeled as stochastic pro-
cesses, and specific estimated parameters (often empiri-
cally derived) are used for frequency, extent (spatial),
duration (temporal), and intensity. Global events on
geological time scales, such as volcanism and asteroids,
are not considered in this category.

Anthropogenic Disturbance

Human dominance of landscapes—with its inevitable
habitat conversions, destruction, and degradations,
from local to global scales—is geologically and evolu-
tionarily a recent phenomenon, but it is already chal-
lenging the intensity and scale of the two greatest mass
extinctions the planet has faced: those at the Permian-
Triassic and Cretacecus-Tertiary boundaries (Ward
1994). Quantitative measures of human presence and
disturbance to the landscape are important for amphib-
ian monitoring and include road density (classified by
interstates, secondary roads, rural dirt roads, jeep trails,
etc.), fractal dimension, contagion, land cover type, eco-
system/habitat areas, fragmentation, connectivity, adja-
cent ecosystems, and landscape pattern. Langton
(1989) discusses the effects of roads on amphibians. Var-
ious metrics for quantification are discussed in Krzysik
(Chpt. 42, this volume).

Biogeography and Stochasticity

Species distribution and density patterns from local to
global scales are primarily dependent on the EASs dis-
cussed above. However, several other factors are also re-
sponsible and in specific circumstances may be impor-
tant, but they are difficult to quantify and are included
as EASs for completeness. These attributes represent
biogeography (spacial, ternporal, and historical factors)
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and stochasticity, which represents random unpredict-
able events, including catastrophes such as volcanos,
carthquakes, meteors/asteroids, and extreme cases of
the natural disturbance regimes discussed above.

Amphibians on the Landscape

I constructed a baseline classification of ecosystems rele-
vant to amphibian ecology and natural history require-
ments. The classification was based mainly on hydrology
but also reflected topography (see Tahle 5-3). It is im-
portant to note that there is a substantial ecological dif-
ference and implications between riparian zones and
the presence of both aquatic and terrestrial habitats, Ri-
parian zones have their own ecological identity based on
structure, function, and processes and are characterized
by steep moisture, physical, and chemical environmen-
tal gradients. The functiona]i.ty of these ecosystems, as
well as the response of biological organisms to them, is
unique and cannot be considered as either aquatic or
terrestrial habitat or both. Species that are riparian spe-
cialists require the environmental, biological, and spa-
tial contexts of this water-land interface. Although ripar-
ian systems represent a wide variety and complexity of
classes (mainly dependent on region and geomorpholo-
gy), they remain unique in the landscape and should be
classified as such (Gregory et al. 1991; Franklin 1992;
Malanson 1993). A federal symposium on the value of
riparian habitats was instrumental in initiating a great
deal of interest and research in these previously ignored
ecosystems (Johnson and Jones 1977). If riparian zones
are degraded (by humans or cattle), riparian species are
dramatically affected, but species requiring aquatic or
both terrestrial and aquatic habitats may not be affect-
ed. It is well documented that the ecological integrity of
riparian zones directly affects water quality, instream
flows, and flooding regimes (Karr and Schlosser 1978;
Osborne and Wiley 1988; Jehnston, Detenbeck, and
Niemi 1990; Schlosser 1991; Becker and Neitzel 1992).
I matched the ecosystem classification of Table 5-3
with all of the amphibian genera in North America
north of Mexico (Collins 1990; Table 54). Note that
three genera in the Midwest fauna (Desmognathus,
Eurycea, Gyrinophilus) include species outside of the Mid-
west that have different ecosystem requirements. A sub-
set of these data consisted of genera occurring in the
midwestern states included here. Amphibian genera
represent major ecological adaptive themes (e.g., Inger
1958) and therefore provide a foundation to character-
ize and monitor natural history requirements in the
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Table 5-3. General ecosystem classes important to am-
phibians. See text for explanation of terminology.

Terrestrial

Perennial
Lentic Intermittent
Ephemeral
Aquatic  Surface
Perennial
Lotic Intermittent
Ephemeral

Subsurface

Perennial
Lentic Intermittent
Ephemeral
Riparian
Perennial
Lotic Intermittent
Ephemeral

Marshes, fens, bogs
Wetlands
Swamps, floodplains

context of environmental trends and habitat condition,
including landscape-scale ecosystem requirements, spa-
tial patterns, and temporal trends. However, the use of
subspecies (or metapopulations or gene pools) is the
preferred approach, because populations are the inher-
ent units in natural selection and fitness, providing the
adaptations for exploiting their spatial environmental
resources—ecosystem requirements (specialized eco-
logical adaptations). Additienally, a further hierarchical
finer resolution of the ecosystem classification present-
ed here provides a foundation for amphibian conserva-
tion. Indeed, analysis at one hierarchical level provides
the data for more detailed ecosystem classification.
Figure 5-1 shows that most salamanders are complete-
ly terrestrial or aquatic or require the ecotone (inter-
face) between these ecosystems. Most anurans require
both terrestrial and aquatic ecosystems in the landscape.
There are no anurans in our fauna that are completely
aquatic or found in subterranean waters, and only two
genera are cornp-letely terrestrial. These data suggest
that anurans would be more susceptible to landscape
fragmentation than are salamanders because they are

more dependent on landscape mosaics, the patterns
developed by two or more ecosystem types.

Although thirty-one ecosystem combinations are pos-
sible in Table 5-3 (sixteen single classes and fifteen when
pairing terrestrial with one of the other fifteen classes),
only eleven ecosystem classes were required to classify
on a baseline scale the ecology and natural history re-
quirements of all amphibian genera (Table 5-5). Figure
5-2 shows the relationships of the United States and Ca-
nadian (USC) amphibian fauna to the eight single eco-
system classes, and Figure 5-3 shows the comparable
data for the Midwest fauna. Trends in the Midwest fauna
are in general comparable to trends in the USC fauna.
The major differences are that the Midwest has no com-
pletely terrestrial anurans (the two terrestrial genera are
tropical-subtropical), has a higher proportion of com-
pletely aquatic salamanders, is less represented by sub-
terrancan forms, and has a higher proportion of wet-
land (including riparian-lentic) anurans. Figures 5-4
and 5-b show comparable data on the respective faunas
that require both terrestrial and aquatic ecosystems to
complete their life histories. Again, the midwestern fau-
na reflects the USG fauna, with the main differences
being that a higher proportion of USC anurans rely on
ephemeral breeding pools than do those in the Midwest
(reflecting western adaptations to arid and semi-arid

Table 54. Legend
TER Terrestrial
AQLE Aquatic-Lentic-Perennial Waters; may include

marsh habitat

RIP-LE Riparian-Lentic-Perennial Waters

AQLO Aquatic-Lotic-Perennial Waters

RIP-LO Riparian-Lotic-Perennial Waters; includes
springs

SUB Subsurface, Subterranean Waters

WET-M Wetlands-Marshes, Fens, Bogs

WET-S Wetlands-Swamps, Floodplains

LE-P Terrestrial and Aquatic Lentic-Perennial
Waters

LE-IE Terrestrial and Aquatic Lentic-Intermittent or
Ephemeral Waters; may include floodplain
peols

LO-PIE Terrestrial and Aquatic Lotic-Perennial,

Intermittent, or Ephemeral Waters




Table 5-4. The ecosystem classifications of Table 5-3 matched with the amphibian genera in North America north

of Mexico

Genus

TER

AQLE RIP-LE

AQLO

RIP-LO

SUB  WET-M WET-S LE-P LEIE

Ambystoma
Amphiuma
Aneides
Batrachoseps
Cryptobranchus
Desmognathus
Dicamptodon
Ensatina
Eurycea
Gyrinophilus
Haideotriton
Hemidactylium
Hydromantes
Leurognathus
Necturus
Notophthalmus
FPhaeognathus
Plethodon
FPseudobranchus
Pseudotriton
Rhyacotriton
Siren
Stereochilus
Taricha
Typhlomolge
Typhlotriton
Acris

Ascaphus

Bufo
Eleutherodactylus
Gastrophryne
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Figure 5-1. Distribution of United States and Canadi-
an amphibian genera in six general ecosystem classes.
For explanation of abbreviations, see Table 5-4. Note
that the last class is the only one that consists of two
ecosystem classes—terrestrial and aquatic.

Figure 5-2. Percent of United States and Canadian am-
phibian genera classified by ecosystem requirements.
For explanation of abbreviations and for the specific
requirements of each genus, see Table 54.

Figure 5-3. Percent of Midwest amphibian genera
classified by ecosystem requirements. For explanation
of abbreviations and for the specific requirements of
each genus, see Table 5-4.



landscapes) and the importance of Pacific coast sireams
as breeding sites for some Taricha species.

The classification of each subspecies based on a finer
resolution ecosystem hierarchy, including regional dif-
ferences, would be most illuminating for designing a
natonal monitoring program. Some genera are species
rich. Although some of this diversity represents allopat-
ric geographical divergence, much of it undoubtedly
underlies environmental adaptations that would enrich
the hierarchical classes of Table 5-5 and provide more
detailed environmental requirements and ecosystem re-
lationships. Species-rich genera based on Collins
(1990}, not including recognized subspecies, are Ple-
thodon (forty-two), Rana (twenty-four), Bufo (eighteen),
Ambystoma (fourteen), Pseudacris (thirteen), Desmo-
gnathus (twelve), Eurycea (twelve), Fhyla (ten), and
Batrachoseps (ten). Batrachoseps and Ensatina (only one
species with seven subspecies) are two taxa that are cur-
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rently being revised, and undoubtedly their richness will
increase.

Assessing and Monitoring Amphibian Populations
with GIS

Below is an outline of the potentials of GIS for assessing
and monitoring amphibian/ecosystem parameters and
analyzing and modeling their relationships.

1. Database management
a. Spatial database needs and analytical
requirements
b. Distribution and abundance data for amphibi-
an populations
c. Ecosystem attributes (Tables 5-3, 5-4) and
hierarchical extensions

Table 5-5. Eleven ecosystem classes important to amphibian ecology and natural

history. See text for explanation of terminology.

Terrestrial
1
Lentic
2
Aquatic Surface
Lotic
3
Subsurface
4
Lentic
5
Riparian
Lotic
6
Marshes, fens, bogs
7
Wetlands
Swamps, floodplains
8
9
Lentic
10
Terrestrial and Aquatic
11 Lotic

Perennial

Perennial

Perennial (intermittent)

Perennial (intermittent)

Perennial

Intermittent, ephemeral

Perennial, intermittent

Ephemeral
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Figure 5-4. Percent of United States and Canadian am-
phibian genera needing both terrestrial and aquatic eco-
systems. For explanation of abbreviations and for the
specific requirements of ¢ach genus, see Table 5-4.
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Figure 5-5. Percent of Midwest amphibian genera requir-

ing both terrestrial and aquatic ecosystems. For explana-

tion of abbreviations and for the specific requirements of
each genus, see Table 5-4.

2. Coverage manipulations and transformations
a. Transformations of scale—extent and grain
b. Changes in cartographic projection
c. Georeferencing and classification of thematic
maps
d. Merging of thematic maps
3. Identification of specific ecosystems
a. Selection of specified ecosystems—absolute or
probability based
b. Deletion of specific ecosystems
¢. Ranking of ecosystems
4. Disturbance
a. Natural regimes

b. Anthropogenic
5. Spatial contexts of ecosystems
a. Metrics—size, shape, and condition
b. Metrics—patterns, mosaics, fragmentation, con-
nectivity, density, association, distance, texture,
and similarity indices
c. Ordinations, classifications—environmental gra-
dients
6. Temporal contexts of ecosystems
a. Monitoring ecosystem trends
b. Monitoring spatial contexts
7. Modeling
a. Species-habitat (environment) relationships
b. Metapopulation dynamics in spatial and tempo-
ral contexts
c. Natural and anthropogenic disturbances in spa-
tial and temporal contexts
8. Sampling
a. Develop sampling design
b. Select specific sampling sites
¢. Model validity, efficiency, and economy
9. Outputs
a. Visual displays, maps, tabular output, and mag-
netic/electronic data
b. Identification of data needs
¢. Protection, conservation, and management
needs

Summary

There is growing concern that amphibian populations
are declining from local to global scales. A robust hierar-
chical ecosystem classification system is presented that is
applicable at any scale and resolution (more correctly,
extent and grain in landscape ecology terminology).
From this conception, a baseline ecosystem classifica-
tion is developed that is relevant to amphibian ecology
and conservation. Although there are many ecosystem
combinations possible in this classification, including
combinations requiring two or more ecosystems, only
eleven ecosystem classes were required to classify on a
baseline scale the natural history requirements of all the
amphibian genera of North America north of Mexico.
Amphibian genera represent major ecological adaptive
themes and therefore provide a foundation to charac-
terize and monitor natural history requirements in the
context of environmental trends and habitat condition.
General trends for ecosystem requirements in this fauna
are discussed, including a comparison with genera oc-
curring in the Midwest. Trends in the Midwest fauna are



in general comparable to the continental fauna. The
major differences, based on genera, are that the Mid-
west: (1) has no completely terrestrial anurans, (2) hasa
higher proportion of completely aquatic salamanders,
(3) is less represented by subterranean forms, and (4)
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has a higher proportion of wetland (including riparian-
lentic} anurans. The continental fauna has a higher
proportion of anurans that rely on ephemeral breeding
pools, reflecting western adaptations to arid and semi-
arid landscapes.



Ecological Design and Analysis: Principles and Issues in Environmental

Monitoring

Anthony J. Krzysik

The purpose of this chapter is to identify some impor-
tant principles and issues in areas that are relevant to
field biologists and ecologists and to researchers or envi-
ronmental managers who are designing and implement-
ing ecological assessment or monitoring programs. It is
not meant to provide an introduction, or a comprehen-
sive review, of experimental design or statistical analysis.
The principal goal of the chapter is to discuss areas of
common pitfalls, confusion, misunderstandings, misap-
plications, and the typical sources of statistical errors.
The intended audience is both the novice and the expe-
rienced practitioner. Extensive references to the litera-
ture are provided, and these, along with my personal
experiences, are synthesized. Although original refer-
ence sources are given, the major emphasis has been on
identifying practical and useful literature to provide the
reader with fundamentals and some examples in the sci-
ence (some would say art) of experimental design and
statistical analysis.

A review of research designs and data analysis, as well
as inventory methods relevant to monitoring amphibian
populations, is provided by Heyer et al. (1994). Intro-
ductory overviews of ecological monitoring are found in
Clarke (1986), Goldsmith (1991), and Spellerberg
(1991).

Issues in Statistical Analysis

Approaches

Statistical analysis consists of at least six general ap-
proaches.
Estimation. A common approach is estimating the

mean of a population and, just as important (usually
more so), an associated measure of the precision of the
estimate. (Population in this chapter will be used in a
statistical sense and refers to a collection of observa-
tions, measurements, or individuals. In this context it
can also refer to a treatment or control group.) The pre-
cision in the estimate depends on the inherent variabil-
ity in the population and the sample size used to esti-
Statistical
precision is called error and is expressed as standard

mate the statistic under investigation.
deviation, standard error, confidence interval, or co-
efficient of variation.

Inference. Inference, or hypothesis testing, is the most

" frequently associated and best-known approach for the

rationale of statistical analysis. Inference helps the inves-
tigator decide if the observed difterence in a test statistic
(e.g., mean) between two or more populations is due to
chance at some a priori set probability. The question is
posed as a null hypothesis to falsify (null hypothesis:
populations are homogeneous). If there is no difference
between two or more populations, what is the probabili-
ty of selecting samples with differences as large as or
larger than those observed? This probability is the famil-
iar p-value, or . If this probability is small, then one con-
cludes that the differences are unlikely to be due to
chance, and there is a statistically significant difference
in the populations (null hypothesis rejected) at the p-
level. If the probability is large (observed differences
may be due to chance alone), then either the popula-
tions are homogeneous at the plevel or the statistical
power of the test was too low (i.e., some combination of
small sample size, high natural variability, or the “differ-
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ence” selected to assess significance was too small), It is
imperative to remember that the null hypothesis can
never be proved correct but can only be rejected with a
known risk of being wrong.

Exploratory Data Analysis. Exploratory data analysis
(EDA) is an important class of statistical analysis that has
not been fully appreciated, despite the excellent techni-
cal foundation laid by Tukey (1977). EDA has also been
called Initial Data Analysis (IDA) by Chatfield (1988),
who concludes that the process is indispensable and re-
quired by the statistician to get a feeling for the data.
EDA is intended to:

1. check the quality of the data, including missing
observations, outliers, high variance, or noise

2. compare controls and treatments and to assess
the relative magnitude of differences

3. examine patterns in the data

4. calculate and examine descriptive and summary
statistics

5. examine and test for suitability of design and
analysis assumptions (e.g., parametric, multivariate
normality, independence, stratification justification)

6. evaluate the need for data transformations (e.g.,
to fit parametric assumptions, especially homoscedas-
ticity [homogeneous variances]) or rescaling of data

7. provide an aid for statistical model formulation
and for determining or refining final statistical analy-
ses methods

All of these are important to EDA, and their relative
merits directly depend on the specific nature of the
project or database in question. The routine use of EDA
has become a current reality because of the power of
modern microcomputers and the availability of interac-
tive graphics and extensive graphics output options in
microcomputer statistical software packages (e.g., SAS,
S-PLUS, SPSS, SYSTAT). Ali of these packages are excel-
lent and come with excellent documentation, Compre-
hensive guides for using S-PLUS (Venables and Ripley
1994) and SYSTAT (Wilkinson et al. 1996) are available.
SAS is only available by license, making it accessible to
universities but too expensive for individuals and maost
federal research facilities. While there are other good
statistical packages available, 1 am most familiar with
these four.

Interactive graphics enable one to rapidly examine
data patterns and trends from scatterplots of raw data,
transformed or rescaled data, or residuals; references
include Charmbers et al. (1983) and Cleveland (1993).
An important procedure, available in all four of the

above statistical packages, is the scatterplot matrix. If
you have ten variables in your study and in your EDA you
want to investigate their relationships to each other, the
scatterplot matrix routine produces a single plot con-
taining 100 subplots of each combination of the ten vari-
able pairs. The plots above the diagonal are the same as
the plots below the diagonal, except that the ordinates
and abscissas of all paired variables are interchanged.

The importance of EDA using graphical displays, scat-
terplots, and visualizing data techniques is exemplified
in a most remarkable example discussed by Cleveland
(1993). Minnesota agronomists in the early 1930s con-
ducted a field experiment on barley vields at six study
plots. The data were subsequently analyzed, reanalyzed,
and used as examples, even into the 1960s and 1970s. Sir
Ronald Fisher, who developed the foundations of mod-
ern statistics, analyzed the data and even used them as
an example in his classic book on experimental design
(Fisher 1935); Fisher’s three seminal books, Statistical
Methods for Research Workers (1925), The Design of Experi-
ments (1935), and Statistical Metheds and Scientific Inference
(1956) were published as a single book, entitled Statisti-
cal Methods, Experimental Design, and Scientific Inference, in
1990 by Oxford University Press. The statisticians who
examined the data consistently concluded that five of
the six plots showed a barley vield decrease between
1931 and 1932, while the other plot showed an increase.
The use of visualizing data techniques and scatterplots
clearly demonstrated that there was a major error in the
data set; the study plot with the aberrant trend had its
years mistakenly interchanged prior to all subsequent
analyses. When this error was corrected, all plots showed
remarkable consistency in vield decrease between 1931
and 1932.

In addition to the references noted above, important
references on EDA are Ehrenberg (1975), Erickson and
Nosanchuk (1977), McNeil (1977), Velleman and Hoag-
lin (1981), Hoaglin et al. (1983, 1985, 1991), and
Chatfield (1985).

Descriptive. The distinction between EDA and descrip-
tive statistics is academic because, for practical purposes,
descriptive statistics are an important component of
EDA. Descriptive statistics are generally summary statis-
tics for all of the primary parameters or variables in the
project, generally stratified by spatial, temnporal, or user-
defined classes. Summary statistics are provided by all
statistical analysis packages. An important part of this
category is the art and science of data display and graph-
ics presentations. A foundation for the philosophy and
techniques of data display has been the work of Tufte



(1983, 1990). Practical guidance for using graphics ef-
fectively can be found in Chambers et al. (1983) and
Cleveland (1993). The four statistical packages men-
tioned earlier also provide advice on producing and dis-
playing graphics. Two high-quality scientific graphics
packages that have excellent graphics capabilities and
documentation are Axum and SigmaPlot. There is even
abook available for providing guidance for using Sigma-
Plot (Charland 19956).

Modeling. Modeling represents the efforts to verify
whether experimentally derived data fit specific mathe-
matical models related to biological, physical, geologi-
cal, or chemical phenomena or processes. The most
common example in statistics is linear regression: do the
data fit a straight line? Of course, any kind of polynomial
curves in any dimensions can be equivalently modeled,
but with much more difficulty. Krzysik (Chpt. 42, this
volume) discusses the modeling of “thin-plate spline
functions” to interpolate and smooth a surface fit to
three-dimensional field data points of estimated popula-
tion densities.

There are four main strategies in model building:
model formulation, model estimation or fitting, sensitiv-
ity analysis, and model validation. Model validation in-
cludes the familiar:

Experimental data = mathematical model + residuals

For further analysis, the residuals can be subjected to
standardization (homogeneous variances), their distri-
bution can be examined by using probability plots, they
can be plotted against selected variables, or they can be
subjected to additional modeling. The analysis of residu-
als may provide valuable insight into an important facet
or unexpected behavior of the model. More details of
statistical modeling are available in Daniel and Wood
(1980) and Gilchrist (1984). See also the subsection on
Parametric Statistics (below).

Spatial Analysis. Spatial analysis has developed inde-
pendently from mainstream statistics and has employed
its own terminology. Spatial statistics, once the domain
of mainframe and minicomputer workstations, is rap-
idly gaining popularity with the growing use of Geo-
graphic Information Systems (GIS; Krzysik, Chpt. 42,
this volume) and the availability of high-power micro-
computers. Within the next year or two, spatial analysis
modules will be available for most popular microcom-
puter statistics packages. A module for S-PLUS has al-
ready been released. Krzysik (Chpt. 42, this volume)
presents a summary of interpolation and smoothing
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methods and a survey of the literature.
Data Analysis

Fundamental Statistical Analysis. For readers not famil-
iar with statistical methods and experienced in the ratio-
nale of their use, Motulsky (1995) offers an excellent
and basic overview; Chatfield (1988) is advanced but
insightful; Abramson (1994), although oriented to epi-
demiological and clinical studies, presents information
for statistical interpretation in an easy-to-read format;
and Huff (1954) is mandatory reading for all research-
ers, managers, and consumers. Good introductory texts
in statistics are Campbell (1989), Weinberg and Gold-
berg (1990), Freund and Wilson (1993), and Zolman
(1993). Li (1964) provides an excellent introduction,
especially valuable in analysis of variance (ANOVA) fun-
damentals, but is no longer in print.

The basic fundamental texts for statistical analyses
that are used in the classroom as well as by field biolo-
gists and ecologists are Box et al. (1978), Steel and Tor-
rie (1980), Zar (1984), Snedecor and Cochran (1989),
and Sokal and Rohlf (1994). Arminger etal. (1995} isan
advanced text that offers more comprehensive coverage
of specialized topics in statistical analysis: missing data,
mean- and covariance-structure models, contingency ta-
ble analysis, latent class models, analysis of qualitative
data, analysis of event histories, and random coefficient
models. Potvin and Travis (1993) present a summary of
references for statistical methods in twelve topic catego-
ries: a posteriori testing, density dependence, experi-
mental design, maximum likelihood, multivariate analy-
sis, philosophical issues, ratios, regression analysis,
repeated measures analysis, spatial heterogeneity, spe-
cies associations, and trend analysis.

Parametric Statistics. Parametric statistics represent the
well-known statistical methods taught in introductory
statistics courses (see references above) and cover the
familiar topics of linear regression, ANOVA, and analy-
sis of covariance (ANCOVA). The latter is ANOVA with
the addition of a covariate, making it also a linear regres-
sion model. A good example of the use of ANCOVA is
testing the hypothesis that two salamander populations
possess different clutch sizes (an ANOVA model}, while
simultaneously taking into account that clutch size is a
function of body size (a linear regression model). In ac-
tuality, linear regression belongs to the family of gener-
alized linear models (GLM), and ANOVA and ANCOVA
are special cases of linear regression. Nonlinear, or poly-
nomial, regression and multiple regression (more than
one independent or predictor variables) are extensions
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of the basic model. Fundamentals of GLM and model-
ing are provided by McCullagh and Nelder (1983},
Cullen (1985), Neter et al. {1985), and Dobson (1990).
Although regression analysis is well covered in the fun-
damental texts referenced above, other valuable texis
include Draper and Smith (1981), Montgomery and
Peck (1982), Neter et al. (1985), and Chatterjee and
Price (1991). ANOVA is covered in all basic statistics
texts, and an advanced treatise is Searle et al. {1992).

Other regression analyses that have extensive applica-
tions in ecology are logistic regression and locally
weighed scatterplot smoothing {LOWESS) regression
(Trexler and Travis 1993). Logistic regression deals with
dichotomous (bivariate} or polychotomous dependent
variables and transforms the data to model binomial or
multinomial distributions, LOWESS models the rela-
tionship between a dependent (response) variable and
independent variables under the assumption that
neighborhood values of independent variables within a
range are good indicators of the dependent variable in
that same range.

In traditional least-squares regression, estimators are
unbiased (i.e., the expected value is the population pa-
rameter). When independent variables are highly corre-
lated (common in ecological data), unbiased estimators
produce large variances. Ridge regression has been sug-
gested as a model to obtain biased estimators of regres-
sion coefficients and to stabilize variance (Hoerl and
Kennard 1970a,b; Montgomery and Peck 1982),

Parametric statistics are based on three important as-
sumptions: (1) population samples or observations are
normally distributed; (2) populations (comparisons)
possess homogeneous variances (residuals); and (3) ob-
servations are independent of one another, that is, that
random cbservations and sampling or experimental er-
rors are independent, therefore avoiding sampling or
experimental bias.

These assumptions can be tested formally, but typical-
Iy they are not. Goodness-of-fit tests and calculations of
skewness and kurtosis (available in all basic statistical
packages) can test for normality. Bartlett’s test assesses
homoscedasticity, but its practical value has been ques-
tioned (Harris 1975). Sampling independence may be
difficult to assess but in some cases can be detected by
correlational tests or by the examination of scatterplots
of the raw data. In some situations, spatial autocorrela-
tion may present problems for collecting independent
samples (see Legendre 1993). Parametric statistical
methods are generally considered to be robust with re-
spect to these assumptions when sample sizes are reason-

able (e.g., twenty to thirty) and particularly when the
raw data have been transformed. A major reliance on
robustness is the central limit theorem, which states that
the means of variables from nonnormal (e.g., skewed)
distributions are themselves normally distributed. Bio-
logical data are often log-normally distributed with the
mean and variance highly correlated. Biological count
data typically form Poisson distributions, where the
mean equals the variance. A log transformation for log-
normal data and a square-root transformation for data
with Poisson distributions are suggested to meet para-
metric assumptions (Sokal and Rohlf 1994). Additional-
ly, log transformations of the data are effective at stabiliz-
ing heterogeneous variances. Therefore, the most
critical parametric assumption remains the indepen-
dence of errors. The violation of this assumption is com-
men and results in a sampling bias.

Milliken and Johnson (1984, 1989) present practical
approaches and methods of data analysis for experimen-
tal designs and parametric data that are plagued with
the well-known problems associated with field data:
failures in assumptions, unbalanced designs, lack of
replication, repeated measures, multiple comparisons,
outliers, and missing data.

Balanced ANOVAs are required to obtain unambigu-
ous interpretations of interaction effects and overall
significance. The term “balanced” means that there are
equal observations in each experimental treatment. Bal-
anced designs cannot always be used for the practical
collection of ecological field data. Shaw and Mitchell-
Olds (1993) review ANOVA for unbalanced designs
and provide guidelines for the analysis of fixed effects
models.

Nonparametric  Statistics. Nonparametric  statistics
(NPS) are also called distribution-ree statistics because
they make no assumptions about test statistic distribu-
tion, variance heterogeneity, and other behaviors. They
also respond well to the analysis of ordinal or categorical
data. Many researchers believe that nonparametric
methods possess low power in contrast to parametric
tests. In reality, the difference is not significant (Hol-
lander and Wolfe 1973; Noether 1987). However, what is
not always appreciated is that, like parametric tests, non-
parametric tests are also subjected to the same two im-
portant limitations and violations of statistical analyses:
nonindependence of sampling errors (the need for ran-
dom sampling) and the loss of statistical power when
sample sizes are too small (Box et al. 1978; Stewart-
Oaten 1995). The chi-square test is the best known, and
the most abused, nonparametric test. The fundamental



texts for nonparametric analysis are Siegel (1956),
Hollander and Wolfe (1973), and Connover (1980).

Potvin and Roff (1993) emphasize the prevalence of
nonnormality in environmental data and present the
case that distribution-free robust statistical methods
should be more extensively used in ecological research
and monitoring. Johnson (1995), Smith (1995), and
Stewart-Oaten (1995) challenge their conclusion and
do not recommend the widespread or routine use of
NPS in ecology. Their argument is based on the follow-
ing issues:

1. NPS should not be a substitute for insufficient
sample sizes, poorly conceived experimental or sam-
pling designs, unbalanced data sets, poor field proce-
dures, or just poor data.

2. NPS also require assumptions, which are usually
unappreciated, unknown, ignored, or overlooked.

3. It is important that the investigator using the sta-
tistical test make an a priori assessment of the relative
importance of Type I and Type II errors. See the
sections on Statistical Power and Significance Tests
(below).

4, Statistical significance is often confused with bio-
logical significance or judgment.

Multivariate Statistics. The statistics discussed above
deal with data possessing a single dependent (response)
variable. Multivariate statistics deal with data that have
multiple dependent and independent variables. Suit-
able introductions are Pielou (1984), Manly (1986},
Digby and Kempton (1987}, and James and McGulloch
(1990). For additional discussion and references, see
the review of multivariate methods in Krzysik (1987,
Chpt. 42, this volume). Gifi (1990) presents a compre-
hensive review of multivariate analysis for categorical
data and nonlinear models and includes an interesting
example of correspondence analysis, where he analyzes
and graphically presents the subject material covered in
multivariate analysis books (1957-1978). Principal com-
ponent analysis (PCA) is a powerful procedure for ordi-
nation, data reduction, data transformation, and data
standardization (Krzysik 1987). PCA produces newly
derived variables from linear combinations of the origi-
nal variables (often highly correlated), such that most of
the original variance in the original data is expressed in
as few as possible new uncorrelated variables. The use of
PCA for ordination has been criticized (e.g., Gauch
1982), but also see the review by Wartenberg et al.
(1987).

Nontraditional Statistics. Resampling statistics and per-
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mutation/randomization tests represent a rapidly devel-
oping field of nontraditional statistics. These are com-
puter intensive procedures that include Monte Carlo
methods, the calculation of exact p-values (parametric
and nonparametric), jackknifing, bootstrapping (Miller
1974; Efron 1982; Edgington 1987; Noreen 1989; Efron
and Tibshirani 1991; Manly 1991; Shao and Tu 1995;
Weerahandi 199%), and multiple comparisons (Westfall
and Young 1993). These techniques are particularly use-
ful for nonparametric data (appreciable violation of
parametric assumptions) and messy data: small samples,
unbalanced data (dramatic differences in interpopula-
tion sample sizes), strongly skewed data or residuals,
data possessing strange distributions, missing observa-
tions, and outliers. Nonparametric tests are desirable
because they make no assumptions about the distribu-
tion of test statistics. However, like parametric tests, they
still rely on asymptotic behavior, which requires reason-
able sample sizes and balanced data. Asymptotic theory
is not valid for data sets that are small, highly skewed,
sparse, or unbalanced. “The difficulty of exact calcula-
tions coupled with the availability of normal approxima-
tions leads to the almost automatic computation of
asymptotic distributions and moments for discrete ran-
dom variables, . . . How does one justify them? . . . Rigor-
ous answers (o [this] question require some of the deep-
est results in mathematical probability theory” (Bishop
et al. 1975). These limitations have been recognized for
some time, and Fisher (1935) has suggested the use of
permutational p-values for randomized experiments.
However, the routine use of permutation methods de-
pends directly on the availability of inexpensive, high-
powered computers. Indeed, it is now possible to com-
pute exact permutated p-values for nonparametric tests
and thus avoid asymptotic assumptions {(Mehta et al.
1988; Agresti et al. 1990; Good 1994).

Jackknifing and bootstrapping are often used to esti-
mate the precision (especially standard error) of de-
scriptive statistics, complicated functions, environmen-
tal parameters, and ecological indices. In the jackknife
procedure, the original sample data are divided into
groups. Usually each group represents a single datum
(e.g., asample with thirty observations would have thirty
groups). New samples are generated by deleting each
group in turn, one at a time, for the entire original sam-
ple. In the above example, there would be thirty new
samples, each with twentynine observations. The de-
sired statistic (e.g., mean) is calculated from the newly
generated samples, and the variability among the sam-
plesis used to estimate the standard error of the statistic.
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The jackknife procedure reduces bias in the estimated
statistic. For a nonnormal distribution, the jackknife is
more suitable than the more commonly used F-test
(Arvesen and Schmitz 1970).

In the bootstrap, a large number of new sample data
sets (usually 1,000 to 50,000} are created from the origi-
nal data by randomly resampling with replacement from
the original data set. For example, let the original data
sct contain ten observations. Each newly derived data set
with its ten observations is generated as follows. The first
observation is selected at random from the original data
and is “replaced” back into the data set. This process is
repeated to select the second observation and is contin-
ued until ten observations are obtained. Therefore, for
this first resampled data set, a specific observation in the
original data may have been selected once, twice, three
times, or up to ten times, or it may not be selected at all.
This procedure is repeated until the desired number of
resampled data sets has been generated. Bootstrapping
is a very computer intensive procedure and has only be-
come feasible with the widespread availability of power-
ful microcomputers. I have run simple algorithms with
small data sets (sample sizes ten to thirty) to create
50,000 bootstrapped samples in less than twenty seconds
on a 486 PC running at fifty megahertz. Although the
bootstrap is much more computer intensive than the
Jackknife, it is generally considered to be an improve-
ment over the jackknife. Bootstrap and jackknife esti-
mates approach each other asymptotically when sample
sizes are large (Efron and Gong 1983).

Reviews of ecological indices are presented in Ludwig
and Reynolds (1988), Krebs (1989), and Dixon (1994;
see also Krzysik, Chpt. 42, this volume}. A practical ap-
plication of combining several of these techniques for
statistical inference in population monitoring can be
found in Krzysik (1997).

Analyses of data that are not continuous variables, but
represent discrete categories, have become more com-
mon with the development of high-power microcom-
puters and associated statistical software. Important lit-
erature in this field includes Cox {1970), Bishop et al.
(1975), Everitt (1977), Fienberg {1980), Plackett
(1981), Fingleton (1984), Young (1987), Agresti (1990),
Gifi (1990), and Nishisato (1994).

Meta-analysis is an important statistical procedure for
analyzing as a group the combined results of individual
experiments (Cooper and Hedges 1993; Petitti 1994).
Its utility is two-foid: (1) none of the individual experi-
ments or studies may have sufficient statistical power to
adequately test the significance of the hypothesis posed;

and (2) it provides a mechanism to produce generaliz-
able results from possibly very specific experiments.
Meta-analysis is a new technique in ecological research
(Gurevitch et al. 1992; Gurevitch and Hedges 1993} but
has had a strong foundation in medicine and social stud-
ies, fields where sample sizes tend to be low, inherent
variability tends to be high, manipulative experiments
are out of the question or unethical, and data are expen-
sive. Meta-analysis was successfully used by the U.S. Envi-
ronmental Protection Agency (1990) to assess and verify
the risk of lung cancer to women exposed to environ-
mental tobacco smoke, Meta-analysis consists of using
the statistical engine to take the data of independent
experiments, combine them, and reach valid general-
ized conclusions.

Another nontraditional approach is Bayesian infer-
ence, Although Bayes’s theorem was published in 1763,
its acceptance and rejection vacillated since that time
{Box and Tiao 1973}. It is currently increasing in popu-
larity. The strength of the Bayesian approach is that it is
based on, and takes full advantage of, incorporating pri-
or information (e.g., previous data or experiments) into
a current statistical analysis (Box and Tiao 1973; Lee
1989; Press 1989).

Time series analysis is relevant in many biological, eco-
logical, and environmental applications, representing
the measurement and analysis of parameters as a func-
tion of continuous or discrete time {Chatfield 1989; Dig-
gle 1990; Brockwell and Davis 1991; Rasmussen et al.
1993).

Data measured as angles, or two- or three-dimensional
orientations, are common in the sciences, including bi-
ology and in any spatial applications. Important applica-
tions in biology would be the design and analysis of ex-
periments in homing; movement of animals from point
of release; directional movements of animals in re-
sponse to external stimuli such as noise, ground vibra-
tions, wind, ocean currents, wildfire, flooding regimes,
circadian rhythms, physical or chemical impacts, and
habitat manipulations. These data are known as circular,
or spherical, data and require specialized statistical anal-
ysis with appropriate models (Fisher et al. 1987; Fisher
1993).

Efficient Statistical Inference

Type I (o} and Type II (B) Ervors. Every basic text in
statistics discusses Type I and Type II errors. A Type I
error is the probability of rejecting a true null hypothe-
sis (no significant difference). Selecting a smaller value
of ¢ reduces Type I error {e.g., select an o of (.01 in-



stead of 0.05). o is also known as the p-value and repre-
sents the probability of selecting random samples that
result in a significant p-value (o) when the difference
between group means is A.

A Type II error is the probability of failing to reject a
false null hypothesis. It is important to note that the cor-
rect phrase is “failing to reject” rather than “accepting”a
null hypothesis, because a failure to disprove a given
null hypothesis does not prove it. Indeed, it I found no
“significance difference” and sample sizes were smail
and/or inherent variability was high, it would be incor-
rect 1o state that I “proved” the null hypothesis, when in
fact it is more correct to say I failed to reject the null hy-
pothesis, possibly because statistical power was low.

Conservative Analysis. A conservative statistical analysis
strategy guards against making a Type I error. A conser-
vative strategy includes the a priori selection of conser-
vative statistical tests or the selection of low o values.

Statistical Power. The power of a statistical test is
defined by 1 - B. Therefore, power is the probability of
rejecting a false null hypothesis. In other words, high
power is directly related to a smaller B (a lower Type 11
error). } represents the probability of selecting random
samples that result in a nonsignificant p-value () when
the difference between population means is A. Both ¢
and A must be selected a priori and are independent of
statistical intervention. Both are dependent on the tech-
nical experience or judgment of the investigator in se-
lecting what the difference between population means
should be before it is considered statistically significant
under the null hypothesis, with the probability o, of mak-
ing a Type I error. Power represents the probability of
obtaining a significant difference when the difference
between population means is A. The power of an analy-
sis is therefore related to inherent variability, sample
size, and the difference between population means (A)
thatI want to call a statistically significant (o) difference.

Statistical power analysis should be conducted as an
integral component of the experimental design before a
study is implemented and should also be reported in the
published results of the study. This applies to both re-
search and environmental management projects. The
standard text for power analysis is Cohen (1988), and
software to conduct the analysis is available (Borenstein
and Cohen 1988).

Statistical results that are reported to have low power,
or appear to have low power when no power analysis was
reported, should be looked at with skepticism when con-
clusions are reached that are based on the failure to re-
ject a null hypothesis—the failure to find significance.
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Peterman (1990a) found that 98 percent of recently sur-
veyed papers in fisheries and aquatic sciences that did
not reject a null hypothesis failed to report statistical
power or B. Additionally, 52 percent of these papers
reached conclusions as if their null hypothesis were
true. Peterman (1990a) presents an important funda-
mental discussion of power analysis in statistical infer-
ence and of its implications for researchers, policy
makers, and decision makers in environmental manage-
ment. Peterman (1990b) also draws attention to the ab-
sence of power analysis in assessing the effects of acidic
deposition on forest declines. These papers should be
required reading for researchers and resource manag-
ers contemplating the design of any large-scale ecologi-
cal or environmental monitoring programs. The high
inherent variability of natural systems presents a formi-
dable obstacle to designing environmental monitoring
programs with sufficient power to detect changes or
trends {Pechmann et al. 1991; Osenberg et al. 1994).
Additional suggested readings include Tacha et al.
(1982}, Toft and Shea (1983), de la Mare (1984), Roten-
berry and Wiens (1985}, Swihart and Slade (1986), Ger-
rodette (1987), and Green (1989). See also the section
on Significance Tests (below).

Increasing Statistical Power. There are several ways o
increase statistical power. First, use large or at least ap-
propriate sample sizes, which increases degrees of free-
dom. Increasing sample size is the most important and
usually the most feasible way of increasing power.

Second, design experiments that have small error
variance (within population variance) and reduced con-
founding effects. This produces a smaller denominator
in the F-test, and therefore significance can be detected
with smaller between treatment variance.

Third, increase the value of o. This is the usual alter-
native when sample size cannot be increased. Although
this increases power and reduces the chances of making
aType Il error, it increases the chances of making a Type
I error. There is a mutual trade-off when selecting he-
tween making a Type I or a Type II error (you cannot
have your cake and eat it too).

Fourth, increasing A increases power, because at any
level of sampling variability, it is more reassuring to at-
tribute significance to larger differences than to smaller
differences.

Finally, report a power analysis with your data. Based
on your sample size and the inherent variability in your
data (error variance), how small a difference could you
have detected as significant with the o value that you
a priori selected?
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Robustness. Large sample sizes create high degrees of
freedom. No matter how complicated an ANOVA, the
degrees of freedom in the denominator for the F-test are
the most important factor for judging significance.

There are two additional important factors to consid-
er. Statistical comparisons (populations compared)
should be similar in sample sizes, and two-tailed tests are
more robust than one-tailed tests.

Harris (1975) concludes that most data sets in univari-
ate, parametric-based statistical tests are robust to the
assumptions of normality and homogeneity of varianc-
es, unless sample sizes are small and unequal. Harris
(1975) suggests the following guidelines:

Var__ /Var <20 (Var = sample variance)

N__/N__<4 (N =sample size)

max min

Error degrees of freedom > 10

Significance Tests. There is a great deal of empirical evi-
dence (Morrison and Henkel 1970; Roberts 1976; Gutt-
man 1985; Gardner and Altman 1986; Jores and Madoff
1986; Oakes 1986; Perry 1986; Millard 1987; Krebs 1989;
Wiens 1989; Yoccoz 1991; McBride et al. 1993; Motulsky
1995) and historical consensus from statisticians (Tukey
1960, 1980, 1991; Wolfowitz 1967; Deming 1975; Praut
1976; Cox 1977, 1986; Carver 1978) that significance
tests have been excessively used and misapplied, particu-
larly in regard to confusion with biological significance
or relevance (see also the preceding subsection on In-
creasing Statistical Power). Statistical practitioners have
dismissed the cautions of statisticians for over a half cen-
tury (Berkson 1942). Saisburg (1985) refers to hypothe-
sis testing as the primary tool in the religion of statistics.
There is no empirical or theoretical foundation for se-
lecting p = 0.05, as is routinely done in biological data
analysis and tests for significance. P-values cannot even
be compared among studies, because they are a function
of specific project design parameters and sample size
(Gibbon and Pratt 1975). In a demonstration of the ap-
plicability of significance tests to contrast soil pH among
fields and to evaluate United States regulations for
groundwater quality, McBride et al. {1993) conclude
that significance tests have no practical value or merit
and recommend that researchers and environmental
managers place more value on statistical power and de-
ciding on “practical differences” when statstical compar-
isons are being made among means and their variances.

There is an important difference between biological /

ecological and statistical significance, although this is
often overlooked. Biological/ecological significance
represents biological realism and common sense direct-
ly relevant to actual ecological systems. Statistical signifi-
cance is only relevant to sample size in the specific con-
text of the probability of finding an observed difference
by chance alone, relative to the inherent variability in
the system under investigation. Biological relevance
does not enter into the equation. Statistical significance
will always be assured as long as sample size is large
enough to “statistically detect” even the smallest differ-
ences, differences that are undoubtedly irrelevant to the
normal course of biological variability. Therefore, a sta-
tistical significance is not necessarily of practical or rele-
vant significance, At the other end of the spectrum, sam-
ple sizes that are too small relative to the inherent
variability of ecological systems (low statistical power)
may fail to find biological relevance when it is present.
The testing of significance for multiple comparisons is
not valid unless equal sample sizes are used.

Although most statisticians and researchers who apply
statistics to their experiments do not advocate the aban-
donment of significance tests, there probably is consen-
sus that more care should be taken in their use. It is
more desirable to present means with their standard
deviations (standard errors) or confidence intervals and
sample sizes (Cochran and Cox 1957; Gardner and Alt-
man 1986; McBride et al. 1993).

Transformations. Probably the most common source of
sample heterogeneity in biological data is that the mean
and variance are correlated. Data transformation (espe-
cially the log transformation)

X, =In (x+1)

(X, is the transformed variable x, and In is the natural
logarithm)

removes the functional dependence of the mean and
variance. Log transformation is also effective in stabiliz-
ing unknown sources of heterogeneity, as long as they
are not toc extreme. Steel and Torrie (1980) refer to
this as irregular error heterogeneity. The source of this
heterogeneity could be due to outliers, spatial heteroge-
neity, or procedural errors. Outliers may represent natu-
ral variability (possibly indicating small sample sizes) or
important departures from the data, and their removal
should be considered cautiously (see Barnett and Lewis
{1984] for guidance). Outliers could also be due to pro-
cedural errors, which are beyond statistical treatment,



and in this case they can be removed. Spatial heteroge-
neity is best handled by sample stratification, but this is
difficult or unmanageable if the spatial pattern is not
obvious. Inherent spatial complexity and mosaics, espe-
cially at scales much smaller than the sampling area of
interest, are best handled by nested sampling designs.

The most commonly used transformations are the log
and square rooct (e.g., Sokal and Rohlf 1994). The log
transformation is most frequently used because it pos-
sesses many desirable properties, including making vari-
ables independent of scale (Jolicoeur 1963a,b; Marriott
1974). Scale independence is a critical consideration,
especially in multivariate analysis, otherwise the results
of the analysis may depend on the scale of the original
measurements (Gower 1967; Orloci 1967; Noy-Meir et
al. 1975; Pimentel 1979). The square root transforma-
tion is most commonly used in count data, which typical-
ly follow a Poisson distribution (mean and variance are
equal). Guidance and practical references for data
transformations are Elliott (1977), Green (1979), Steel
and Torrie (1980), Draper and Smith (1981), Zar
{1984), Snedecor and Cochran (1989), Fry (1993), and
Sokal and Rohlif (1994).

A broad family of transformations can be derived
from modeling power series (Healy and Taylor 1962;
Box and Cox 1964; Draper and Smith 1981; McCullagh
and Nelder 1983). Southwood (1966) discusses the use
of Taylor’s power law. Southwood (1966), Poole (1974},
Elliott (1977}, and Green (1979) discuss the fitting of
negative binomial distributions. Williams and Stephen-
son (1973) discuss cube-root transformations.

Transformations can also include methods that rank,
standardize, or statistically manipulate raw data into a
“new data set.” Green (1979) recommends transform-
ing the raw data to ranks and then using Fisher and Yates
tables (a comprehensive set of statistical tables pub-
lished in 1974) to transform to standardized deviates,
making rank values independent of sample size.

An important transformation for multivariate data is
the use of principal component analysis {PCA; Krzysik
1987). Significance tests in multivariate analysis, as in
parametric analysis, assume independence in indepen-
dent (predictor) variables, A PCA transformation be-
fore multivariate analysis of variance (MANOVA), dis-
criminant analysis, and multiple regression would
produce the desired criteria of independence. Green
{1979) emphasizes that the assumption of indepen-
dence is the one most frequently ignored in statistical
analysis. Another important advantage of PCA, and us-
ing a correlation matrix of original variables as input for

Ecological Design and Analysis 393

the PCA analysis, is that scale magnitude (including log-
arithmic variables such as pH), and even the mixing of
all possible numerical scale variable types (ratio, inter-
val, ordinal or rank, bivariate), is completely and
efficiently standardized (mean of zero and unit vari-
ance; Krzysik 1987). Nominal scales other than bivariate
ones may or may not be combined validly with continu-
ous and rank data. See Hayek (1994) for a description of
numerical scales.

Issues in Experimental Design
Experimental Design

The foundations of experimental design were devel-
oped by Fisher (1935) for manipulative laboratory (ge-
netic} and agriculture field experiments. Since the clas-
sic references in experimental design were first
published by Cochran and Cox (1957) and Cox (1958),
there was for a time a conspicuous absence of texts in
this field. (Both of these texts, Box and Tiao (1973), and
others were reprinted in 1992 in the John Wiley and
Sons Classics Library Editions.) Treatments of experi-
mental design by standard statistics texts are usually lim-
ited to the design of ANOVA comparisons (e.g., factori-
al, nested, splitplot, Latin square). Lindman (1992)
presents a comprehensive treatment of ANOVA in ex-
perimental design. With the realization of a vacant
niche, a surge of experimental design texts were pub-
lished in the late 1980s and early 1990s. Selected exam-
ples include Kish (1987}, Mead (1988), Keppel and Ze-
deck (1989), Montgomery (1991), Atkinson and Donev
(19923, and Manly (1992). In the interim, a Canadian
aquatic ecologist published a synthesis of experimental
design and data analysis that has been relevant for prac-
ticing field biologists and ecologists {Green 1979). De-
spite its age, the applicability of Green's text remains
current, and it is still in print. In this discipline, the pub-
lishing date has little bearing on the contemporary ap-
plicability. Fisher’s (1935) tool box contains the funda-
mental basics of statistical and design tools, and even at
this early stage in the development of experimental de-
sign Fisher realized the value of permutation/random-
ization tests. However, it was only the advent of high-
speed microcomputers that made these tesis feasible
and routine {see the subsection on Nontraditional Sta-
tistics, above).

Additional practical discussions of experimental de-
sign for field biologists include Milliken and Johnson
(1984), Hairston (1989), Skalski and Robson (1992},
and Hayek (1994}. Two books, Fry (1993) and Scheiner
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and Gurevitch (1993), address a remarkable range
of statistical design and analysis issues in the context of
real examples of current research interest and high
relevancy to biology and field ecology.

The need for valid experimental designs for environ-
mental monitoring has been emphasized (Leibetrau
1979; Hurlbert 1984; Millard and Lettenmaier 1986;
Stewart-Oaten et al. 1986; Legendre et al. 1989; Keith
1990; Eberhardt and Thomas 1991; Rose and Smith
1992; Underwood 1994), Because water quality is of
major public concern and represents important issues
in environmental policy and politics, experimental de-
signs and sampling protocols for aquatic ecosystems
have attracted much more attention than have those for
terrestrial landscapes (Montgomery and Hart 1974; Lei-
betrau 1979; Loftis and Ward 1980; Casey et al. 1983;
Hirsch and Slack 1984; Ward and Loftis 1986; Ward et al.
1986, 1990; Perry et al. 1987; Sanders et al. 1987; Hirsch
1988; Taylor and Loftis 1989). Advancements made in
the monitoring of water quality include the statistical
treatment of data at or below detection limits (Gleit
1985; Porter et al. 1988; Helsel 1990).

Eberhardc (1976), Hurlbert (1984), Eberhardt and
Thomas (1991}, and Underwood (1991, 1992, 1994)
have reviewed the issues and brought renewed attention
to the difficulties of achieving true replication in ecolog-
ical experiments and environmental field settings. The
problems encountered in meeting the assumptions and
challenges of experimental design principles have been
recognized for some time by researchers outside of labo-
ratory settings (Campbell 1957; Stanley 1961; Campbell
and Stanley 1963; Cook and Campbell 1979). Campbell
and his colleagues refer to environmental and social ex-
periments as quasi-experimental designs. Milliken and
Johnson (1989) provide a discussion and practical guid-
ance for the analysis of unreplicated experiments. All
the references in this paragraph should be required
reading for serious field biologists.

Experimental design has been routinely applied to
ecological field studies for both manipulative and men-
surative experiments (Hurlbert 1984). Mensurative ex-
periments are defined by Hurlbert (1984) as involving
the making of measurements at one or more points in
space or time. Space or time is the only experimental
treatment. There is no imposition or manipulation of
external factors on the experimental units to constitute
a treatment, “The defining feature of a manipulative ex-
periment is that the different experimental units receive
different treatments and that the assignment of treat-
menis to experimental units is or can be randomized.” If

true randomization of experimental treatments by ma-
nipulative assignment cannot be achieved, then repli-
cates are not independent. Hurlbert called this pseu-
doreplication, and the testing of treatment effects
occurs with an error term inappropriate to the hypothe-
sis being considered. The validity of using unreplicated
treatments rests on the tenuous assumption that all ex-
perimental units are identical at the start of the experi-
ment or manipulation and that they remain identical
(with respect to the treatment) throughout the experi-
ment. Therefore, it follows that the experimenter would
not know if the finding or not finding of significance was
due to treatment effects or some unknown factor relat-
ed to the experimental plots not being identical. Hair-
ston (1989) also reviews and discusses issues of ecologi-
cal field experiments and the potential problems
involved.

Pseudoreplication. Pseudoreplication can arise in a vari-
ety of ways (Hurlbert 1984), and it is worthwhile for field
biologists to review the concept.

1. Replicates are not independent
a. treatments are spatially or temporally segregated
b. treatments are correlated, interconnected, or
somehow related
c. “replicates” are samples from a single experimen-
tal unit (i.e., subsamples)
2. Nonindependent (nonrandom} assignment of treat-
ments
3. Lack of interspersion
4. Sequential samples for each experimental unit are
taken over each of several days
5. Dates are considered replicates of treatments
6. True replicates are pooled prior to analysis
a. an unfortunate loss of information on the vari-
ance among treatment replicates
b. reduces degrees of freedom and power of analysis
7. Combining variance among replicates with variance
within replicates (subsamples) produces confounding
and unknown effects

Components of an Experimental Design. There are four
considerations in an experimental design: controls/
treatments, randomization, replication, and intersper-
sion.

The terminology of controls can be used in a variety of
ways. A control is any treatment against which one or
more treatments is compared (Hurlbert 1984).

1. Receives no treatment. This is the familiar iden-
tification of a “control.”



2. A before-treatment control can also be used as
the experimental unit before a treatment is imposed.

3. Regulation of experimental conditions. Controls
may refer to the establishment of homogeneous ex-
perimental units, the precision of treatment proce-
dures, or the regulation of the physical or chemical
environment.

4. A procedural effect control is used to evaluate
the effects of a procedure that accompanies a treat-
ment but whose effects are not under investigation or
to eliminate confounding etfects. Needle injection
and the psychological control of placebos are com-
mon examples.

5. Temporal change controls are used to monitor
potential temporal changes to experimental units.

6. Experimental design features can be used as con-
trols to minimize the effects of sources of confusion in
experiments and include randomization, replication,
and interspersion (Hurlbert 1984).

Randomization ensures that errors are independent
and normally distributed. This guards against experi-
menter bias and systematic and correlated errors and
ensures knowledge of o (the pvalue that is necessary for
determining significance).

Replication controls for stochastic factors (random
error) that are introduced by experimenter-generated
variahility, inherent or initial variability among experi-
mental units, or chance events affecting an experiment
in progress.

Interspersion controls for known or unknown spatial
variation due to spatial heterogeneity or environmental
gradients for either initial conditions or chance events
affecting an experiment in progress. Interspersion also
controls for experimenter bias and assures statistical in-
dependence.

BA/CI Experimental Designs

Before and after/control and impact (BA/CI) exper-
imental designs address the pseudoreplication. issue in
environmental or ecological field experiments and were
originally discussed by Green (1979). BA/CI designs in-
volve taking samples before the impact (e.g., effluent
discharge) begins and after it takes place at both centrol
and impact sites. Sampling is replicated in time. In 1979
I designed a study to test habitat selection parameters in
neotropical migrant birds in southern Illinois oak-hick-
ory upland forests. The design was to test the null hy-
pothesis that subcanopy or small understory trees do
not affect nest site selection in these species. The study
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was to take place on lands purchased or leased by a coal
company for strip-mining. Six large similar tracts of for-
est fands were available. Four 20-hectare study plots were
placed in the central portion of four forest tracts (ran-
domly determined). The four plots were randomly as-
signed as two control and two treatment plots, The treat-
ment consisted of the removal of subcanopy trees. The
study was designed such that birds would be surveyed for
two breeding seasons in all four plots before treatment.
The trees would be cut in the two ireatment plots in the
fall following the second survey season. The breeding
bird surveys would centinue for two more years in all
four plots. Differences between control and treatment
could be compared as variance components with time as
a “replicate.” Funding cuts, however, prevented the
implementation of the project.

Stewart-Oaten et al. (1986) designed a similar study to
assess experimentally the effects of point source effluent
discharge into aquatic ecosystems, but their design had
only one control-treatment contrast. The authors review
the concept and applicability of BA/CI and provide a
rich source of references. A similar BA/CI design was
used to assess the effects of nuclear reactor coolant
effluent on kelp forests off the coast of southern Califor-
nia {Schroeter et al. 1993). Osenberg et al. (1994) and
Thrush et al, (1994) further discuss the BA/CI concept
in environmental monitoring.

Underwood (1994) has reviewed and rejected the
BA/CI design whenever it has a single control location
and therefore no spatial assessment of variance compo-
nents. Underwood (1994} recommends asymmetrical
designs where several control locations are used to assess
a given treatment effect. In this way, not only can envi-
ronmental impacts or changes be assessed in the tradi-
tional fashion (e.g., trends in mean population density)
but, additionally, impacts that alter temporal variance
can be detected, because temporal interaction terms
can be statistically tested.

Sampling Design

Technical guidance for sampling is available
(Cochran 1977; Elliott 1977; Williams 1978; Desu and
Raghavarao 1990; Thompson 1992). An excellent intro-
duction that should be read by all field biologists is Stu-
art (1984). Nested quadrat designs are typically used to
determine the most efficient size of the primary sample
unit (Greig-Smith 1964; Kent and Coker 1992). Sample
unit size makes no difference in the case of randomly
distributed organisms, while with clumped organisms,
smaller sample unit size results in estimates with
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increased precision.

The importance of large sample sizes is that statistical
analyses are robust to violations of assumptions when
they are based on a large number of error degrees of
freedom. There are two reasons for this. Sample means
from even nonnormal and heavily skewed distributions
approach normal distributions as sample size increases,
a consequence of the central limit theorem. The F-statis-
tic, which determines statistical significance, increases
as error degrees of freedom increase, and as a result
significance can be determined with smaller differences
between (among) population means. For all practical
purposes, sample size and not the fraction of the popu-
lation sampled determines the precision of an estimate.
In a well-designed sampling and statistical design, three
replicates per treatment combination are generally
sufficient. An easily derived expression for estimating
required sample size is found in (Eckblad 1991):

Sampte size ~ (t_) (var)/(acc x mean)?

where t= tvalue from t-table at the desired o level, var =
sample variance, acc = accuracy as desired proportion
from the true mean, and mean = sample mean.

King (1980, 1981) provides a good introduction and
practical guidance for sampling strategies based on sta-
tistical distributions and probability charts. The statisti-
cal distributions covered are uniform, normal, lognor-
mal, binomial, chi-square, Weibull, gamma, extreme
value, logarithmic extreme value, reciprocal functions,
and hazard rate functions.

Ecological Design

The statistical rigor of Hurlbert’s (1984) conclusions
are undeniable. However, in practical field evaluations
of treatment-control effects and using common sense, it
is routinely observed that treatment-effect differences
are much greater than potential effects relevant to in-
herent differences in experimental plots.

The term “ecological design” is more appropriate and
is recommended as a less ambiguous replacement for
the following terminology—experimental design, quasi-
experimental design, sampling design, or research de-
sigh—when used in the context of ecological field ex-
periments or ecological /environmental assessment and
monitoring protocols. Ecological design would include
field designs that are “true” manipulative experimental
designs, unreplicated experiments, sampling protocols,
and the field design issues addressed by Eberhardt and
Thomas (1991).

Basic Principles of Ecological Design and Analysis

Green (1979) introduces ten principles of research
design and analysis that merit discussion.

1. Clearly and completely communicate to your audi-
ence or readers the objectives of your study, the state-
ment of your hypothesis, and the formulation of your
ecological design, sampling strategy, field methods, and
statistical analyses procedures, These concepts must be
tightly integrated throughout the entire project. For ex-
ample, it is invalid to change objectives or hypotheses
partway into a project, because the experimental or sam-
pling design may no longer be applicable. Despite the
logic, intuition, and necessity of this approach, these
fundamentals are commeonly viclated (Rose and Smith
1992). Once the objectives and approach of your study
have been determined, it is advised to seek peer review
or design/analysis expertise.

2. Sample replication is required for each combina-
tion of treatment-control comparisons or any other con-
trolled variable. Differences between spatial and/or
temporal comparisons (and their interactions) can only
be determined by comparisons of variability between
treatments and controls to variability within treatments
and controls. This is the basis of the F-statistic (in
ANOVA) or some multivariate analog of it.

3. An equal number of random replicate samples
should be taken for each combination of controlled
variables (treatmentscontrol). Sampling in “conve-

L

nient,” “representative,” or “typical” locations is not ran-
dom sampling, Random sampling ensures indepen-
dence of sampling errors, an important assumption of
statistical inference. Glass et al. (1972) demonstrate that
correlated errors represent the most serious violation to
the validity of significance tests.

Most statistical analyses can be conducted with un-
equal sample sizes, and typical examples include one-
way ANOVA and linear regression. Complex ANOVA
designs without equal sample sizes can also be easily an-
alyzed with modern computer statistical packages be-
cause the complex algorithms and calculations required
remain transparent to the user. However, in complex
ANOVA, especially factorial designs, equal sample sizes
are required for unambiguous interpretation of interac-
tion components of variance and overall effects.

4, To test if a condition or treatment has an effect,
sampling must be conducted where the condition is
present and where the condition is absent, while every-
thing else is the same, An effect or treatment can only be
demonstrated by statistical comparison with a centrol.



Although this principle is obvious in theory and forms
the basis of experimental design, it is controversial in
applications of typical field studies {e.g., see Hurlbert
1984).

5. A pilot study is well worth the time and resources
invested. Preliminary sampling provides a basis for eval-
uating sample sizes, statistical power, parameters of sam-
pling design, statistical analysis options, and the logistics
and fine-tuning of field methods,

6. Verify if sampling design has adequate and equal
efficiency over the entire range of sampling conditions
encountered, If there is a variation or bias in the spatial,
temporal, or population representativeness you are sam-
pling, treatment comparisons are biased and invalid.
For example, suppose you are interested in comparing
acorn production by white oaks as a function of canopy
closure. Because open forest canopies possess denser
ground cover vegetation, one has to ensure that the sam-
pling efficiency of acorns on the ground is independent
of ground cover. A temporal example would be an inter-
est in seeing if fish abundance and diversity changed
with time in a specific stretch of stream. If a different
mesh size in the seine was used on two different occa-
sions, the temporal comparisons are invalid. Similarly, if
electroshocking was used on two different occasions
when the conductivity of the water was different, tempo-
ral comparisons are biased. Animals that become “trap-
happy” or “trap-shy” alter the representation of the pop-
ulation being sampled.

7. Stratify sampling in heterogeneous environments.
This is also known as blocking in an experimental de-
sign. Spatial heterogeneity is typical in all field situations
involving ecological experiments, and the experimental
design should accommodate this reality (see Dutilleul
1993; Thrush et al. 1994). If a given area to be sampled
has a large-scale environmental pattern, the area should
be classified into subareas or plots (stratas) that form
more homogeneous units. Strata should be constructed
such that within-strata variances are minimized while
between-strata variances are maximized. The sampling
effort should be allocated in proportion to the area of
cach of the identified plots. The main purpose of strati-
fying is to increase statistical power by controlling for
variance between subplots—reducing within-plot vari-
ance and therefore the denominator in the F-statistic.

When it is suspected that sources of variation are hier-
archical or on very small scales, nested or subsampling
designs are most appropriate.

8. Verify that the size of the sample unit is appropriate
to the size, density, and spatial distribution of the organ-
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ism that is being sampled. Estimate the number of repli-
cates required to obtain a desired level of precision. An
important fact of reality is that logistic and economic
considerations often determine the size and number of
sampling units. As a general rule, fewer large samples
are cheaper and/or easier to collect than many smail
ones. However, from the perspective of sampling theory,
many small samples are usually statistically more valid
than a few large ones. An important consideration is
that results of statistical analyses should be independent
of sample size.

9. Test data for adherence to statistical assumptions.
Data should be tested to determine if error variation is
normally distributed, homogeneous, and independent
of the mean. In the case of most field data, these assump-
tioms do not hold, but for practical purposes parametric
inference is robust (see subsection on Robustness,
above). A number of options are available to the investi-
gator: appropriate data transformation, use nonpara-
metric statistics, use resampling statistics, use an appro-
priate sequential sampling design, and test against
simulated null hypothesis data.

Testing serious deviations from assumptions belongs
in the realm of exploratory data analysis. Scatterplots or
histograms of raw data, error terms (residuals), and
sample variances and covariances provide the best in-
sight into variance heterogeneity. Bartlett’s test may be
too sensitive to be of practical value (Harris 1975). Sokal
and Rohlf (1994) recommend treating the ratio of the
largest to the smallest sample variance as an F-statistic
and an alternative to Bartlett’s test.

Heterogeneity of error variances decreases the power
of the analysis, resulting in a higher probability of a Type
II error (Cochran 1947). When groups with the larger
variances have larger sample sizes, the statistical test
employed is more conservative (i.e., the pvalue, or o, is
in reality smaller than believed; Glass et al. 1972).
On the other hand, when groups with the larger vari-
ances have smaller sample sizes, the test is more liberal
(p-value, or &, is effectively larger).

10. Having chosen the best statistical methods to test
your hypothesis, stick with the results of your analyses.
It is incorrect and not statistical inference to select a
posteriori statistical methods or significance levels to
“statistically verify” what you wish your data to demon-
strate.
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Common Problems in Ecological Design and
Analysis

The following is surnmarized from experience and the
references used in this chapter. Green (1979} and Fowl-
er (1990) also provide reviews of the common problems
encountered in statistical analyses.

1. Procedural errors almost always have more detri-
mental effects to the valid outcome of a project than
experimental or statistical (sampling, measurement) er-
rors (Lessler and Kalsbeek 1992). This is why a good,
efficient sampling design is usually more effective than
excessive sample sizes and even 100 percent sampling.
Sampling intensity generally increases the occurrence
of procedural errors. Procedural errors are those
caused by carelessness, sloppy or inappropriate field
methods, poor or inappropriate sampling design, lack
of a quality assurance and control program, inexperi-
ence, fatigue, and mistakes in data collection or record-
ing. Statistical analysis usually cannot centrol, or make
adjustments for, procedural errors.

2. Assumption of independence among independent
{predictor) variables. This is especially violated in multi-
variate statistics where there are many independent vari-
ables and several to many dependent variables. Environ-
mental variables by their very nature and the
interdependencies of ecological systems are usually
{often very strongly) correlated.

3. Hypotheses and p-values (o) must be defined
a priori. The null hypothesis can never be proved.

4. Random sampling is absolutely necessary to avoid
the serious pitfall of biased sampling. If error terms are
not independent, systematic or correlated errors may
result, and significance tests are invalid, The noninde-
pendence of error terms precludes us from knowing o.

5. A valid experimental design requires replication of
all combinations of treatments and controls. This is usu-
ally only feasible and practical in laboratory and agricul-
tural settings. True replication in most environmental
field studies is difficult or impossible to realize. This
problem has been thoroughly reviewed by Eberhardt
(1976), Hurlbert (1984), and Eberhardt and Thomas
(1991), but see Hawkins (1986). The case for pseudo-
replication has probably been overstated on practical
grounds, because field experiments to evaluate “effects”
are usually designed such that the differences between
treatments and controls typically far exceed the inher-
ent or background environmental differences among
experimental units and overshadow the “supposed” con-

founding effects of using pseudoreplicates instead of
“true” replicates.

6. When obvious large-scale spatial variability is
present, samples should be stratified. When small-scale
heterogeneity is known or suspected, a nested sampling
design should be used. In both cases the strategy is to
reduce within-sample variance components. This reduc-
es the error term in the F-statistic or its multivariate
equivalent, effectively increasing the power of the analy-
sis. This increases the validity of significance testing.

7. Avoid doing many separate t-tests. When you ana-
lyze all possible pairs of comparisons, you do not know
the true value of o. Your alternatives are to use a priori
orthogonal contrasts (Sokal and Rohlf 1994) or design a
balanced multifactorial ANOVA. The latter design, with
as low as three replicates per treatment combination,
represents a powerful analysis because error term de-
grees of freedom are reasonably high and treatment in-
teractions are tested. A less desirable alternative is to
decrease the o-value (i.e., force the significance to be
more conservative). This entails adjusting ¢ by the Bon-
ferroni procedure (Day and Quinn 1989; Zolman 1993)
or the Dunn-Sidak procedure (Sokal and Rohlf 1994).

* The same problems arise when doing multiple compari-

sons of linear regressions. Fry (1993} recommends Bon-
ferroni adjustments to calculate confidence intervals for
predictions from regression equations,

8. When you have failed to reject your null hypothesis,
calculate the power of your statistical design. Actually, a
power test should have been conducted a priori as part
of your overall experimental/sampling design. The fail-
ure to conduct a test for statistical power is potentially
a serious concern in studies relevant to conservation
biology and endangered species because a statistical
assessment or monitoring program with low statistical
power could fail to detect population trends or other
experimental parameters of interest.

9. A posteriori multiple comparison tests (MCT)
should be used with caution (Perry 1986; Tukey 1991).
Adjusting o is also important. Follow the advice of Day
and Quinn (1989) and Westfall and Young (1993), MCT
are also discussed in Fry (1993), Zolman (1993), and
Sokal and Rohlf (1994). A major problem with MCT is
the use and determination of significance (adjustments
to o). MCT should not be conducted when the main
effect in an ANOVA is not significant. A priori orthogo-
nal contrasts (Sokal and Rohlf 1994) and two-way ANO-
VA with interaction term are preferred alternatives to
MCT.



10. Repeated measures or observations of the same
individual or population are not independent events.
Neither are field experiments where observations or
data are spatially or otherwise correlated or collected
from the same plot. Nonindependence of measures
strongly violates parametric assumptions and requires
special analysis (Gurevitch and Chester 1986; Crowder
and Hand 1990; Roberts 1992).

11. When using statistical tests, particularly multivari-
ate but also parametric ones, be aware of the assump-
tions the tests make, and test your data to evaluate them.
Check raw data for homogeneity of sample variances.
Check residuals for normality and independence of er-
rors. The treatment of categorically dependent variables
as continuous variables in an analysis is usually not rec-
ommended and should be approached with caution.

12. Interpret interaction effects in multiway ANOVAs
correctly (Steel and Torrie, 1980; Fry 1993; Sokal and
Rohlf 1994). The area times time interaction term in an
ANOVA represents pseudoreplication (Hurlbert 1984).

13. Do not pool populations or plots without justifica-
tion. Although Sokal and Rohlf (1994) provide guid-
ance about when to pool data, it is not a generally rec-
ommended practice. Pooling results in the loss of
variance estimates and reduces the degrees of freedom
for the error term. Pooling also compounds treatment
and population (plot) effects.

14. Avoid step-wise technigues (e.g., step-wise regres-
sion, step-wise discriminant analysis). Because environ-
mental variables are usually highly correlated, the use of
step-wise techniques to extract a ranking of predictor
variables may produce spurious results that would not
be relevant to any underlying environmental reality.

15, Be aware of confounding effects in your experi-
mental design. Confounding effects of environmental
variables are always present because of their high natu-
ral intercorrelations, including spatial and temporal re-
lationships. This is the main reason that step-wise tech-
niques should be avoided (Green 1979).

16. Qualitative data or bivariate data may often be
equal to, or superior to, quantitative data and much
more efficient and economical to collect. Ranked data
may be more efficient {economical) to collect and may
be superior to continuous data.

17. Do not conduct statistics on ratios. Ratios follow
the Cauchy distribution, possess larger variance than ei-
ther original variable, represent a biased estimate of the
mean, and increase size-dependence when attempting
to adjust for scale (summarized in Green 1979). Fleiss
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(1981) is the standard reference for statisticat treatment
of ratios.

18. The use, and more important the ease of use, of
multivariate statistics has dramatically increased with the
availability of modern, high-speed microcomputers and
user-friendly software packages. The user is often con-
ducting multivariate procedures without any idea of the
fundamental mechanics of the analyses, much less the
analyses assumptions and applicabilities. Multivariate
techniques may be very sensitive (some more than oth-
ers) to assumptions of multivariate normality, equiva-
lent dispersion of covariance matrices (comparable to
univariate homoscedasticity), and intercorrelation of
predictor variables. The need for large sample sizes is
the rule and rarely the exception, even with careful eco-
logical designs and high-quality data sets. Discriminant
analyses in particular are susceptible to widespread
abuse and misunderstanding. See James and McCulloch
(1990) for an overview of multivariate analysis and the
reviews by Williams (1983) and Williams and Titus
(1988) for discriminant analysis.

Designing an Ecological Monitoring Program

The design of any ecological or environmental moni-
toring program, including the monitoring of ecological
indicators, specific taxa {e.g., amphibians), or popula-
tions (e.g., endangered species), requires a relatively rig-
id approach or protocol. This is especially important
because costs are high, ecological risk may be at stake
(e.g., extinction of a species or population}, and tempo-
ral considerations are important (i.e., an invalid design
or field methods or the ¢ollection of inappropriate data
parameters relative to stated objectives is discovered sev-
eral years into the program). The following protecol is
recommended. The process will be discussed as an eco-
logical or biological project, but the principles apply to
any study. A complete protocol will be described, but the
details would depend directly on specific objectives and
the magnitude of the project. Obviously a global or de-
tailed regional program would be several orders of mag-
nitude more complex and expensive than a local, fo-
cused effort.

Seoping. The scoping process entails the gathering of
the major players involved in the project, including
sponsors, administrators, environmental managers,
field biologists, statisticians (design and analysis), com-
puter specialists (database management, programming
requirements, GIS requirements), and those with other
specialized expertise {e.g., legal, if legal isuues cannot
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be avoided). This stage also includes the delegation of
specific duties whenever partnerships are involved, and
Memorandums of Understanding (MOUs) are re-
quired. Regional studies are becoming increasingly
common for a number of reasons: economics, avoid-
ance of duplication, sharing of expertise and data, mag-
nitude of project, higher chance of success, leveraging
of funding opportunities, balancing of environmental-
economic-social conflicts, and the need to share respon-
sibilities and legal mandates. Regional approaches
would typically include federal, state, and possibly local
agencies; private parties, including property owners and
conservation groups; and whatever additional technical
and legal experts are required (e.g., consultants and
academics). The scoping process assists in generating
consensus, project purposes and goals, and individual
responsibilities and sets the stage for project objectives.

Objectives. Project objectives are arguably the most im-
portant component of a monitoring program. It has
been my experience that the failure to develop or follow
explicit project objectives is the most common reason
for the failure of both large- and small-scale monitoring
projects. Objectives must be explicitly stated in a written
form and are closely associated with the scoping process.
Objectives determine project priorities, focus, and
specifics.

Scale and Resolution. Scale and resolution are more
specifically defined in landscape ecology terminology as
extent and grain {see Krzysik, Chpt. 42, this volume).
Extent is the largest spatial unit of the project {e.g., the
state of Illinois, the Midwest region, or conterminous
United States), Grain is the smallest resolvable unit for
analysis (e.g., 1 square kilometer in an Advanced Very
High Resolution Radiometer [see Krzysik, Chpt. 42, this
volume] remotely sensed satellite image or sampling
l-square-meter quadrats for herbacecus plants).

Accuracy and Precision. The cost of a project is directly
related to the accuracy and precision (repeatability) de-
sired. High accuracy requires high precision, while mea-
surements that are highly precise and possess low vari-
ance (sampling error) may not be accurate. Accuracy
requires that the experimentally derived statistic is close
to the “actual value.” Accuracy and precision are mainly
dependent on the phenomena under investigation. But
also important is the experimental or sampling design
and sample size, In other words, a poor design may be
overcome with high sample sizes, or even better, fewer
samples are usually required by a superior sampling

design.

An important compeonent of any project is the report-
ing of sampling or measurement error. A number of
terms can be used, and the appropriate one is usually
dictated by the project objectives and other specifics.
Common statistics include variance, standard deviation,
standard error, condfidence interval, and coeflicient of
variation. It is important to report sample size, and sam-
ple size is required to convert between values of stan-
dard deviation and standard error.

Conceptualization. Project conceptualization means ex-
plorations or discussions of ideas with peers or expert
consultants and a thorough literature review. The litera-
ture review should not be limited only to the subject
material directly related to the project, but other poten-
tially relevant literature sources in other disciplines
should be searched. Experience and peer consultation
are important at this stage.

Design. The design phase is highly project specific and
directly dependent on objectives, scale and resolution,
and accuracy and precision. The design phase may in-
clude experimental design, ecological design, and sam-
pling design.

Field Methods. Field methods, or the implementation
of the design, are directly dependent on objectives, scale
and resolution, and accuracy and precision desired.
They may also depend on the design. A frequent mis-
take 1s the confusion of using common methods and
collecting common parameters. For example, say that
you want to monitor changes in vegetation structure
(physiognomy) throughout the United States in all rep-
resentative plant communities. Canopy cover is an im-
portant environmental parameter in this context in any
ecosystem. However, it is erroneously believed that only
one method should be used throughout the sampling
universe to measure this parameter. In reality, the
parameter canopy cover should be measured in all eco-
systems, but the method used depends upon the magni-
tude of canopy cover (e.g., 5 or 95 percent), its spatial
variance and patchiness, its height, and plant form. We
need different methods in different ecosystems because
we want to optimize sampling efficiency, accuracy, and
precision within each of the unique spatial contexts pre-
sented in each ecosystem. The consistent and accurate
estimation of parameters with known sampling error is
the important factor, not consistent methods. Another
important consideration, not often recognized, is that
individual field personnel may prefer or be experienced
with specific techniques, and therefore sampling
efficiency is improved.



Professional Review. At this stage it may be desirable to
obtain a peer or expert review from one or more special-
ists who have had previous experience in similar
projects before additional expenses are incurred or an
invalid approach is implemented. These reviewers
should have expertise in field ecology (including geo-
graphical and local habitats), expertise in statistical de-
sign/analysis, relevant taxonomy expertise, and project-
specific specialties.

Economic and QAC Analyses. The economic and Quality
Assurance and Control (QAC) analyses component is
critical to the overall success of the project yet is usually
overlooked or disregarded as being unimportant. A
thorough economic analysis of the complete cost of the
project is essential, If the project is allowed to proceed
without adequate budget commitments, one or more of
the following will of necessity be compromised (often
severely): objectives, scale/resolution, accuiracy or preci-
sion, design, field methods. A QAC analysis is necessary
for minimizing procedural error. Procedural error re-
fers to poor, sloppy, or inconsistent field techniques, cal-
ibrations, recording of data, and field notes; excessive
fatigue; or just plain mistakes regarding data quality. For
example, I have heard of a field crew that used machetes
to get through the dense brush in placing permanent
transects for monitoring vegetation, while a second crew
was responsible for estimating habitat parameters along
the same transects. Procedural errors usually produce
greater errors than sampling (measurement) errors,
and 100 percent surveys are often less accurate than
well-designed sampling schemes because more effort
may increase procedural error. Furthermore, procedur-
al errors cannot be assessed with statistics, which deal
only with sampling errors.

Reality Adjustmenis. Continuing a project while violat-
ing economic reality almost always means project failure
or at best an exceedingly poor cost-benefit return. At
this stage only three alternatives are possible: change
objectives and/or scale/resolution and/or accuracy/
precision, which usually requires changing the design
and/or field methods; get more money; or quit.

Itis inappropriate and invalid to make a project more
economical by changing the design or field methods
while maintaining original objectives, scale/resolution,
and accuracy/ precision, because by definition the origi-
nal designh and field methods were optimized to provide
ecological validity, statistical sufficiency, and sampling
economy, while meeting specified project objectives.

Professional Review. A peer or expertreview is critical at
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this stage because the project is ready for implementa-
tion with economic and QAC analysis available.

Pilot Study. If the project is of such magnitude and
scope that it represents a significant or exceptional com-
mitment of resources in terms of dollars and personnel,
then a pilot study is highly recommended to evaluate
the design, field methods, logistics, and economics. A
pilot study is important for at least six reasons: it is usual-
ly needed to obtai